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Abstract

In the field of visual scene understanding, deep neural
networks have made impressive advancements in various
core tasks like segmentation, tracking, and detection. How-
ever, most approaches operate on the close-set assumption,
meaning that the model can only identify pre-defined cat-
egories that are present in the training set. Recently, open
vocabulary settings were proposed due to the rapid progress
of vision language pre-training. These new approaches seek
to locate and recognize categories beyond the annotated la-
bel space. The open vocabulary approach is more general,
practical, and effective than weakly supervised and zero-
shot settings. This paper thoroughly reviews open vocabu-
lary learning, summarizing and analyzing recent develop-
ments in the field. In particular, I begin by juxtaposing open
vocabulary learning with analogous concepts such as zero-
shot learning, open-set detection, and open world detection.
Subsequently, I categorize the existing methods into three
main categories: introduction of large-scale datasets, inte-
gration of multimodal large models, and generative open
vocabulary object detection. Among these, the integration
of multimodal large models can be further subdivided into
knowledge distillation, pseudo-label, and transfer learn-
ing. An in-depth analysis is conducted on the main de-
sign principles, key challenges, development routes, and the
strengths and weaknesses of the methodologies, accompa-
nied by a performance comparison. Finally, several promis-
ing directions are provided and discussed to stimulate future
research.

1. Introduction
Object detection is a core task in computer vision for scene
perception, serving as the foundation for many real-world
applications such as autonomous driving and intelligent
robotics. As a fundamental task of scene understanding,
object detection has made significant progress in the era
of deep learning[17]. However, traditional visual percep-
tion models struggle to correctly identify unfamiliar cate-

gories in open scenarios; even state-of-the-art supervised
learning models find it challenging to generalize beyond a
closed set of categories. Additionally, existing datasets are
often limited in scale, with the largest, such as the LVIS
dataset[7], annotating only 1,203 categories. These limita-
tions of closed sets significantly hinder the application of
current detectors in real-world scenarios. To address these
limitations and avoid the high cost of manual labeling, zero-
shot learning and open vocabulary learning have been pro-
posed.

However, zero-shot learning has its limitations. The
model relies solely on predefined word embeddings when
inferring unseen categories, which restricts its ability to ex-
plore the relationships between visual information and un-
seen classes, leading to poor recognition performance for
new categories. Open vocabulary learning aims to enable
the model to use a broader vocabulary during training, al-
lowing it to recognize more unseen categories during infer-
ence.

Open vocabulary detection(OVD) combines images with
natural language descriptions to form an expandable set of
labels, allowing models to continuously update and recog-
nize new objects and scenes in real-world applications. In
this way, OVD overcomes the limitations of closed sets,
achieving broader generalization capabilities and perfor-
mance improvements.

2. Background

2.1. Large Vision-Language Models (VLMs)

Inspired by advances in natural language processing, a new
deep learning paradigm called ”Vision-Language Model
Pre-training” has recently garnered increasing attention. In
this paradigm, Vision-Language Models (VLMs) are pre-
trained on large-scale image-text pairs available abundantly
on the internet. The goal is to learn image-text correlations
to enable effective zero-shot predictions in visual recog-
nition tasks.During the pre-training process, VLMs first
use text encoders and image encoders to extract features
from images and texts, respectively, and then learn visual-



language correlations according to specific pre-training ob-
jectives. By matching the embeddings of any given image
and text, VLMs can perform zero-shot evaluations on un-
seen data. Benefiting from large-scale pre-training, large
VLMs demonstrate exceptional zero-shot transfer capabili-
ties, forming the basis for many studies in the Open Vocab-
ulary Detection (OVD) field.

Image-text contrastive pre-training aims to learn visual-
language correlations by contrasting image-text pairs,
bringing the embeddings of paired images and texts closer
while pushing apart the embeddings of other images and
texts. The CLIP[16] pre-training objective aligns positive
image-caption pairs within a batch, enabling efficient and
scalable learning of transferable representations. CLIP em-
ploys a symmetric image-text infoNCE loss, where a multi-
head self-attention pooling layer aggregates patch embed-
dings into a holistic representation for image embeddings.
Both text and image embeddings are L2 normalized to cal-
culate their pairwise cosine similarities. In this manner, text
embeddings are treated as frozen classifiers. By perform-
ing contrastive pre-training on 400 million image-caption
pairs, CLIP achieved a significant breakthrough. Inspired
by CLIP’s tremendous success, numerous studies have im-
proved symmetric image-text infoNCE loss from various
angles. ALIGN[8] expanded VLM pre-training scale us-
ing a massive but noisy dataset of image-text pairs through
noise-robust contrastive learning.

Generative VLM pre-training learns semantic knowl-
edge by generating images or texts through Masked Im-
age Modeling, Masked Language Modeling, Masked Cross-
Modal Modeling, and image-to-text generation. This pre-
training objective involves learning image context forma-
tion by masking and reconstructing images. In OVD,
image-to-text generation is commonly used to train VLMs
to predict tokenized texts, generating descriptive texts for
given images to capture fine-grained visual-language corre-
lations. It first encodes the input image into intermediate
embeddings, which are then decoded into descriptive texts.
This approach can generate caption pseudo-labels for im-
ages.

2.2. Related Research Domains

In recent years, the field of Open Vocabulary Detection
(OVD) has made significant advancements. However, its
research trajectory does not exist in isolation and is closely
intertwined with related research domains. I briefly com-
pare these concepts in Fig.1, including zero-shot, open-set,
open world, and open vocabulary.The following is a intro-
duction to related work.

Zero-Shot Detection (ZSD)[2] is a precursor to OVD,
focusing on recognizing new classes without annotated
data. ZSD primarily relies on semantic embeddings (e.g.,
Word2Vec, GloVe, and BERT) to achieve cross-modal

Figure 1. Concepts comparison between zero-shot, open-set/open
world and open vocabulary.

knowledge transfer. However, due to the lack of alignment
with the visual modality, these semantic embeddings exhibit
issues such as high noise and insufficient accuracy in prac-
tical applications.

Open Set Detection [4][15]originates from open set
recognition[18][5]. It requires classifying known categories
and identifying a single ”unknown” category without fur-
ther categorization of specific classes. The main objective
is to reject unknown categories that unexpectedly appear
and potentially compromise the robustness of the recogni-
tion system.

Open World Detection[9] further extends the concept of
open set detection. It not only requires the model to detect
new categories during testing but also to learn and incor-
porate new category knowledge into the known categories.
Like open set detection, it does not require further catego-
rization of specific classes. Open world detection necessi-
tates the design of models capable of continuously updating
and expanding in dynamic environments while ensuring sta-
bility and accuracy.

3. SURVEY
In this section, I will explain the research motivations of
the relevant papers and the hierarchical logical relationships
of their technical points. In Fig.2, I summarize the time-
line of some papers on open vocabulary detection. From
a macro perspective, these papers can be categorized into
three types: 1) Introduction of large-scale datasets, 2) Inte-
gration of multimodal large models, and 3) Generative open
vocabulary object detection.

3.1. Introduction of Large-Scale Datasets

The core idea of this type of method is to incorporate
image-text pairs into the detection training phase.In Fig.3a,



Figure 2. Timeline of Open Vocabulary Detection. Orange repre-
sents VLM, blue represents the use of image-caption pairs, yellow
represents the use of knowledge distillation, green represents the
use of pseudo-labels, red represents the use of Transfer Learning,
and purple represents the use of generative methods.

I present the framework. The extensive vocabulary in the
titles includes both Base Class and Novel Class. Therefore,
aligning proposals containing Novel Classes with words
containing Novel Classes can improve detection of Novel
Classes.
OVR-CNN[20]: To address the limitation of closed cat-
egory sets faced by traditional object detection systems,
OVR-CNN was introduced, aiming to leverage large image-
caption datasets to enhance the model’s ability to recognize
unknown objects. This pioneering work first proposed the
concept of open vocabulary detection, allowing object de-
tection to go beyond a limited number of annotated cat-
egories and to transfer open vocabulary visual-semantic
knowledge learned from captions to downstream detection
tasks, thus achieving more generalized object detection.
The core of this work lies in using image-caption pair data
for pre-training the visual encoder, followed by fine-tuning
on a bounding box dataset. Since captions contain rich de-
scriptions of fine-grained features of image regions, they
cover more object categories. Therefore, through large-
scale image-caption pre-training, the multimodal encoder
(ResNet50 and V2L fully connected layers and BERT) can
learn more generalized visual-semantic mappings. Ulti-
mately, this well-pretrained multimodal encoder is inte-
grated into the Faster R-CNN framework, replacing the
original encoder, significantly enhancing the model’s per-
formance in zero-shot detection tasks.
LocOV[3]: Building on this foundation, to further explore
the potential of image-caption data, LocOV introduces con-
sistency regularization techniques to better utilize the infor-
mation from cross-modal image-caption pairs. It also in-
troduces two stages: local semantic matching (LSM) and
specific task tuning (STT), using classification suggestions

from the RPN to train Faster R-CNN by matching region
features and word embeddings in images and captions, re-
spectively. Through more refined image region processing
and more effective text feature matching, the model’s ability
to recognize novel categories is enhanced. Although GLIP
constructs the object detection task as a phrase grounding
task and introduces a grounding dataset, I still prefer to clas-
sify it into the next category.

3.2. Integration of Multimodal Large Models

This category of methods introduces large pretrained
Vision-Language Models (VLMs) to enhance OVD perfor-
mance. It can be further subdivided into three types: 1)
Knowledge distillation methods, which utilize the power-
ful image-text alignment capabilities of pretrained VLMs
(as teacher models) to guide the object detection models
(students) in better matching visual features with seman-
tic labels at the region level(see Fig.3c). 2) Pseudo-labeling
methods, similar to those in ”Introduction of Large-Scale
Datasets” in Sec.3.1, which use rich image-text pairs. Ad-
ditionally, these methods employ large pretrained VLMs
(such as RegionCLIP) or self-training (such as GLIP) to
generate pseudo-labels, enabling the model to learn about
Novel Classes.(see Fig.3b) 3) Transfer learning methods,
which directly use pretrained multimodal VLMs as the vi-
sual encoders (backbones) for detection models. Since
VLMs have already learned rich visual and semantic fea-
tures from large-scale cross-modal data, it is only neces-
sary to add or fine-tune specialized detection heads on top
to adapt to the specific needs of object detection tasks.

3.2.1 Knowledge Distillation

ViLD[6]:The background of ViLD is the significant poten-
tial shown by pretrained models in learning joint image-text
representations. Against this backdrop, ViLD first intro-
duced the pretrained multimodal model CLIP to enhance
OVD performance. The core of ViLD is the application
of the knowledge distillation method. First, it uses a pre-
trained open vocabulary image classification model (such
as CLIP or ALIGN) as a teacher model to encode image re-
gions and textual descriptions, achieving image-text align-
ment. Then, it trains a two-stage detector (such as Mask
R-CNN). To address the limitations of the CLIP model in
region-level image recognition, ViLD uses RPN scores to
assist CLIP in region-level predictions, ensuring that region
embeddings align with the image and text embeddings pro-
duced by the teacher model. Specifically, ViLD consists of
two branches: the ViLD-text branch and the ViLD-image
branch. In ViLD-text, base category texts are input into
the CLIP text encoder to obtain text embeddings, which
are then used to classify target regions. In ViLD-image,
corresponding proposals are input into the CLIP image en-



(a) Image-text pairs

(b) Knowledge Distillation

(c) Pseudo Label

(d) Generative

Figure 3. Framework

coder to obtain image embeddings, and knowledge distil-
lation is performed on region embeddings after ROI align-
ment. Compared to ViLD-text, ViLD-image distills infor-
mation from both base and novel classes, as the propos-
als from the proposal network may contain novel classes,
whereas ViLD-text only uses text information from base
classes.

3.2.2 Pseudo-Label

RegionCLIP[22]: The starting point for RegionCLIP is the
observation that the multimodal large model CLIP, intro-
duced for OVD tasks, has low recognition rates at the region
level and is insensitive to bounding box locations. This is
because CLIP was trained to match images as a whole with

text descriptions, without capturing fine-grained alignment
between image regions and text spans. Therefore, Region-
CLIP begins by using the CLIP model to perform initial
image-text pair pretraining, obtaining visual and language
encoders that efficiently encode images and text. Based on
captions, it extracts key concepts and converts traditional
labels into a prompt format, using the pretrained language
encoder to extract text features. Simultaneously, it uses
an RPN network to generate bounding boxes, inputs them
into the CLIP visual encoder, and uses contrastive learn-
ing to match and label the extracted image regions with
pseudo-labels. Finally, these finer-grained pseudo region-
word pairs are used for CLIP-style pretraining at the region
level, achieving fine-grained alignment between image re-
gions and words, thereby improving region-level detection
capabilities.
GLIP[12]: Another effort aiming to achieve a finer-grained
understanding of images based on CLIP is GLIP. GLIP con-
structs object detection as a phrase grounding task, unifying
phrase grounding and object detection tasks. Since ground-
ing datasets contain very rich visual object names and con-
cepts, training the model with both types of datasets can
greatly enhance OVD performance. GLIP first uses exist-
ing grounding data and labeled detection data for super-
vised training, extracting feature embeddings through the
Text Encoder and Visual Encoder, and aligning the cross-
modal embeddings via the Deep Fusion module to obtain a
teacher model. Then, based on the teacher model, it gen-
erates ”region-text pairs” pseudo-labels from ”image-text
pairs”. These pseudo-labels are combined with the origi-
nal labeled data to train the student model. Through this
self-training approach, GLIP can expand its training data,
further improving the model’s generalization capability for
new concepts. Like CLIP, GLIP can adapt to different
downstream tasks through prompt tuning or efficient task
adapters, reducing the training costs for downstream tasks.
Grounding DINO[14]: While GLIP is based on the tra-
ditional single-stage detector dynamic head design, which
may limit its performance ceiling when handling unseen
categories, Grounding DINO upgrades GLIP’s detector to
a Transformer-based detector on the foundation of DINO.
It uses Swin-Transformer and BERT to extract feature em-
beddings for text and images, respectively. These features
are then sent to a Feature Enhancer for finer-grained mul-
timodal feature fusion. After obtaining cross-modal text
and image features, the Language-guided query selection
module selects text features more closely aligned with the
image features to initialize Query tokens. Finally, these
cross-modal queries are sent to the Cross-Modality De-
coder, which decodes the queries using multimodal features
to predict object boxes and extract corresponding phrases.
LBP[11]: Researchers of LBP observed that previous stud-
ies transferring VLMs (e.g., CLIP) knowledge to object de-



tection tasks through knowledge distillation tend to rep-
resent background proposals with a single ”background
class,” ignoring the diversity of background categories. This
can cause the trained model to fail to capture various im-
plicit knowledge within background proposals. Moreover,
there may be conceptual overlap between the estimated
background categories and novel categories, which could
hinder accurate probability scoring for novel categories, re-
sulting in ambiguity during inference. Hence, the LBP
model was proposed. The LBP framework includes three
modules: BCP, which discovers and represents latent back-
ground categories estimated from background proposals;
BOD, which generates pseudo-labels by clustering back-
ground proposals in images using k-means, helping to iden-
tify and distinguish hidden objects within the background;
and IPR, which corrects the probability scores for novel cat-
egories, addressing the issue of conceptual overlap between
estimated background categories and novel categories dur-
ing inference, thus enabling the model to accurately com-
pute probabilities for novel categories.

3.2.3 Improving Pseudo-Label Quality

VL-PLM[21]: While works like GLIP and RegionCLIP
utilize VLMs to generate pseudo-labels for model pretrain-
ing, researchers of VL-PLM identified that pseudo-labels
constructed by visual-language models (e.g., CLIP) for un-
labeled images can suffer from poor localization accuracy
despite having high CLIP scores. To address this, VL-PLM
combines RPN scores, which correlate positively with pre-
dicted region IoU scores, with CLIP classification scores.
By repeatedly feeding the predicted regions into the RoI
Head for adjustment, this approach effectively reduces re-
dundant proposals and enhances the localization accuracy
of pseudo-labels.
MarvelOVD[1]: Researchers of MarvelOVD observed that
the pseudo-labels generated by VLMs often contain noise
due to the domain gap between VLMs pretraining and ob-
ject detection tasks. This noise stems from VLMs’ lim-
ited ability to comprehend the context of local image re-
gion proposals. To mitigate this, MarvelOVD integrates
the capabilities of both the detector and VLMs in an on-
line manner, using the rich contextual information provided
by the detector to alleviate domain shift issues in VLM’s
local region predictions, thereby reducing noisy labels dur-
ing the initial training phase and progressively improving
pseudo-label quality. Additionally, MarvelOVD introduces
an adaptive weighting mechanism to suppress the impact
of poorly aligned training boxes and employs a hierarchi-
cal label assignment method to resolve conflicts between
pseudo-labels and base class annotations, preventing nega-
tive effects on base class detection performance.

3.2.4 Transfer Learning

F-VLM[10]: Prior to F-VLM, many works involved fur-
ther modifications of CLIP, such as RegionCLIP and GLIP.
However, researchers of F-VLM discovered that the orig-
inal CLIP features already contain rich semantic and lo-
cal perceptual information, enabling strong region classi-
fication even without parameter fine-tuning. Thus, F-VLM
abandons knowledge distillation, task-specific pretraining,
or weakly supervised learning methods, and instead, trains
the detector head on a frozen VLMs backbone, combin-
ing the outputs of the detector and VLMs during inference
to obtain the final detection results. This approach elimi-
nates the computational demands of knowledge distillation,
pretraining, or weakly supervised learning, achieving bet-
ter performance compared to ViLD while saving up to 200
times in training computation.

3.3. Generative Open Vocabulary Object Detection

GenerateU[13]: Researchers of GenerateU observed that
existing open vocabulary object detection techniques sig-
nificantly expand object categories by leveraging weak su-
pervision (e.g., image-text pairs) or large pretrained visual-
language models (e.g., CLIP). Despite the open-set nature,
these tasks still require predefined object categories during
the inference stage. To enable object detection without pre-
defined object categories during inference, they proposed
a generative approach to open vocabulary object detection,
formulating object detection as a generative problem(see
Fig.3d) and introducing a simple framework called Genera-
teU. The model consists of two components: a visual object
detector (Deformable DETR) to localize image regions, and
a pretrained multimodal large language model (MLLM) re-
sponsible for converting visual regions into object names
to generate pseudo-labels. GenerateU optimizes these two
components through end-to-end training and achieves re-
sults comparable to GLIP on the LVIS dataset.

4. Summary of Existing Work
From the narrative in Sec. 3, we can clearly observe the de-
velopmental trajectory and key technological advancements
in the field of Open Vocabulary Object Detection. Their
performance can be found in Table 1. The evolution primar-
ily focuses on addressing the limitations of closed category
sets, leveraging multimodal data to enhance model gener-
alization, and optimizing pseudo-label quality. The follow-
ing is a summary categorized by technological development
logic:

OVR-CNN marks the inception of open vocabulary de-
tection by pretraining a visual encoder on a large-scale
image-caption dataset, thereby learning generalized visual-
semantic mappings. This approach enhances the object de-
tection model’s ability to recognize unknown categories,



Table 1. Representative works summarization and comparison in Sec. 3.

Method Dataset Image
Backbone Detector Text

Encoder APN
50 APB

50 AP50

Image-caption Pair

OVR-CNN [20] COCO R50 FRCNN BERT 22.8 46.0 39.9
LocOV [3] COCO R50 FRCNN BERT 28.6 51.3 45.7

Pseudo-Labeling

RegionCLIP [22] COCO R50 FRCNN CLIP 31.4 57.1 50.4
VL-PLM [21] COCO R50 FRCNN CLIP 34.4 60.2 53.5
MarvelOVD [1] COCO R50 MRCNN CLIP 37.8 57.4 52.0
GLIP [12] COCO Swin-L DyHead BERT - - 60.8
GLIP [12] LVIS Swin-L DyHead BERT - - 26.8
Grounding DINO [14] COCO R50 DINO BERT - - 65.8
LBP [11] COCO - FRCNN CLIP 35.9 60.8 54.3

Knowledge Distillation

ViLD [6] OV-COCO R50 MRCNN CLIP 27.6 59.5 51.3

Transfer Learning

F-VLM [10] COCO R50 MRCNN CLIP 28.0 - 39.6

Generative

GenerateU [13] LVIS Swin-L - CLIP - - 27.9

successfully transferring open vocabulary knowledge to the
object detection task and overcoming traditional category
limitations. LocOV further refines the utilization of image-
caption data by introducing consistency regularization and
local semantic matching (LSM), improving the alignment
of image regions with textual features and increasing the
accuracy of novel category recognition.

Subsequently, CLIP was proposed and open-sourced.
Following this, ViLD leveraged the pretrained CLIP model
for knowledge distillation, significantly boosting OVD per-
formance. By employing a dual-branch structure and
RPN score assistance, it optimized image-text alignment
at the regional level, showcasing the immense potential
of pretrained multimodal models. RegionCLIP addressed
CLIP’s limitations in regional recognition through con-
trastive learning and pseudo-label strategies, achieving fine-
grained alignment of image regions with text, thus enhanc-
ing regional detection accuracy. GLIP unified object de-
tection with phrase grounding, exploiting the richness of
grounding data and deep feature fusion to markedly im-
prove the model’s understanding and generalization to new

concepts. GroundingDINO upgraded the detector to a
Transformer-based architecture, combining more efficient
multimodal feature fusion and language-guided query se-
lection to enhance the model’s capability in handling unseen
categories. LBP tackled the limitations in background pro-
posal processing by discovering potential background cat-
egories, distinguishing background objects, and correcting
probability scores, thereby improving the model’s ability to
differentiate between background and novel categories.

To better utilize pseudo-labels, VL-PLM and Mar-
velOVD respectively addressed the issues of low pseudo-
label quality and domain shift. VL-PLM combined RPN
scores with multi-stage adjustments, while MarvelOVD in-
troduced an adaptive weighting mechanism and hierarchical
label assignment to enhance noise suppression capabilities.

F-VLM revealed that a frozen CLIP model inherently
possesses strong regional classification capabilities. By di-
rectly training the detector head on the frozen VLMs, it
avoids knowledge distillation and pretraining, achieving ef-
ficient and high-performance OVD while significantly re-
ducing training computational costs.



GenerateU transformed OVD into a generative problem,
utilizing Deformable DETR for image region localization
and a multimodal large language model for pseudo-label
generation. This approach enabled object detection without
predefined categories, demonstrating the potential of gener-
ative methods.

5. Challenges And Outlook
5.1. Challenges

Open vocabulary object detection (OVD) hinges on the se-
mantic alignment between regional features and category
vocabularies, necessitating finer granularity in training data
and model predictions. The primary technical challenges
include:

Overfitting to Base Categories Weakening General-
ization to New Categories: A major challenge in OVD is
ensuring that the model can generalize to detect categories
not seen during training. This requires the model to learn
representations that can be effectively applied to new cate-
gories. Due to the lack of annotations for new categories,
the model may overfit to the base categories, making it dif-
ficult to recognize new ones effectively.

Utilization of Weak Supervision: Open vocabulary
learning methods often rely on weak supervision signals,
such as image-text pairs or pretrained vision-language mod-
els, involving information from both image and text modal-
ities. Effectively performing cross-modal learning and in-
tegrating these weak signals into the detection pipeline to
improve the detection of new categories is a significant chal-
lenge.

Handling Large Vocabularies: OVD systems need to
manage and classify a vast, potentially infinite, number of
object categories. In an open vocabulary setting, there can
be significant class imbalance between new and base cate-
gories, which can impair the model’s performance in rec-
ognizing new categories. Thus, the model needs to han-
dle large-scale datasets and distinguish numerous categories
based on semantic similarity.

Evaluation Metrics and Datasets: Evaluating OVD
models is complex as it involves assessing the performance
on both base and new categories. The overlapping con-
cepts between categories (e.g., watermelon and fruit, person
and child) necessitate the design of new metrics to better
measure open vocabulary methods. Additionally, current
datasets are still relatively small. More extensive datasets,
such as OVDEval[19], are needed to achieve a true open
vocabulary setting.

5.2. Future Work

Combining with Large Language Models. Compared
with VLMs, most LLMs contain more text concepts, which
naturally have a broader scope than various dataset tax-

onomies. Thus, how to better align the LLMs knowl-
edge with visual detectors or segmenters to achieve stronger
zero-shot results still needs exploration.

Pseudo-Label Generation and Utilization.In the con-
text of open vocabulary learning, effectively utilizing weak
supervision signals, especially through pseudo-label strate-
gies, is crucial for expanding the model’s vocabulary. Cur-
rent pseudo-label strategies often rely on numerous but po-
tentially noisy image-text pairs, requiring researchers to ex-
plore methods for generating higher quality pseudo-labels.
Additionally, investigating how to dynamically adjust and
utilize these pseudo-labels during training to maximize their
positive impact while minimizing potential misguidance is
also a key focus in this field.

3D Open Vocabulary Scene Understanding. Given
the high cost of annotating point cloud data, particularly
in dense prediction tasks, open vocabulary understanding
in 3D scenes becomes especially important and urgent. Fu-
ture research may delve deeper into mapping and extending
the knowledge from 2D models to 3D spaces. This includes
developing new geometric and semantic alignment strate-
gies and exploring how to efficiently integrate cross-modal
knowledge directly on point cloud data. Moreover, design-
ing open vocabulary learning architectures tailored to the
characteristics of 3D data and leveraging the inherent struc-
ture of point cloud data to enhance the model’s ability to
recognize unseen categories will also be key research areas
in this field.

6. Conclusion
In this survey, I have examined the development of Open
Vocabulary Detection (OVD). Initially, the paper introduces
the definition of OVD, its related fields and tasks, and the
background knowledge of large Visual Language Models
(VLMs), setting the foundation for subsequent discussions.
Next, I conduct a detailed analysis of twelve OVD methods,
delving into their research motivations and key technolo-
gies, and establishing the hierarchical logical relationships
between these methods. By categorizing the technical char-
acteristics of these methods, I classify them into three main
categories, elaborating on the unique aspects and applicable
scenarios for each. In the experimental section, I provide a
comprehensive description of the experimental setups and
fairly compare the performance of these methods. Finally,
I summarize the major challenges facing open vocabulary
learning and highlight several promising future research di-
rections.
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